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1  Introduction
As the population of the world continues to grow, one of the biggest challenges 
facing food security is crop disease (Strange and Scott, 2005). Disease can have 
devastating effects on the yield of a crop, in some cases causing major losses 
where food quality is concerned. Not only is this a problem on a global scale, 
but it also has effects on a local scale for individual farmers. In poorer areas of 
the world, farming is the main or only source of income for many families

For any farmer, being able to detect and identify diseases in their plants is 
hugely important for the mitigation of potential losses. The problem with this, 
however, is that identifying crop diseases often requires specialist knowledge 
which is not always readily available to all farmers and can be expensive. Even 
with specialist knowledge, there are multiple factors that make it even more 
challenging. Many diseases appear with similar symptoms, meaning they are 
easily confused with one another. Furthermore, it is not uncommon for multiple 
diseases to be present at any one time, making the task of distinguishing them 
even more difficult.
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Using machine learning to identify and diagnose crop 
disease

Over recent years, machine learning techniques have been developed 
to assist with the identification and classification of diseases on a number of 
different crop types. Machine learning uses algorithms to learn a specific task 
from data without the solution or the process being explicitly defined by a 
human. It learns to recognise patterns in the data and make predictions based 
on this knowledge.

Multiple different methods have been used over the years, but in this 
chapter, we will focus on deep learning. This has become one of the most 
widely used machine learning methods over recent years, tackling problems 
in healthcare, self-driving cars and natural language processing as well as 
crop disease detection and a vast array of other use cases. In this chapter, we 
introduce deep learning for image analysis and discuss the key successes and 
pitfalls of using these methods for the identification of plant diseases.

2  A quick introduction to deep learning
A common machine learning technique is artificial neural networks (ANN), 
which are inspired by the biological neural network of the brain. They follow a 
logic structure that is meant to mimic the way the human brain thinks and draws 
conclusions. Over recent years, deep learning has taken centre stage in the 
machine learning world. Deep learning takes the ANNs further, making them 
deeper by adding layers. A typical machine learning ANN contains an input 
layer, an output layer and perhaps one hidden layer in between. In comparison, 
deep learning ANNs or deep learning networks contain many hidden layers.

The deep learning networks that are used for the identification of crop 
diseases are often a type of convolutional neural network (CNN) (LeCun et al., 
1999) trained to perform their task by image analysis and classification. As before, 
each network has an input layer where the data (in this case images) is fed into the 
network and an output layer, which is where any predictions are given. Between 
these are a number of hidden layers which perform feature extraction. CNNs are 
used because of their strong ability to extract useful features from the images.

Feature extraction is where the network learns features about the images 
throughout the training process, allowing it to make predictions about the data. 
Earlier hidden layers learn low-level features, for example, lines and edges. 
As the network progresses through the hidden layers, the features extracted 
become more complex, which helps it to make a prediction about the image, 
for example, a classification of which disease is present in an input image. 
Figure 1 shows a simplified representation of the deep learning workflow for 
image analysis.

Training a network for image analysis requires a large dataset of images 
to work with, ideally tens of thousands of images depending on the problem. 
The image dataset is split into smaller datasets, usually train, validation and 
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test sets; however, some studies use only a train set and test set. The split of 
the dataset between these sets varies over different works, but the bulk of the 
images is always contained within the train set, with a smaller amount in the 
validation and test sets.

When training a model, the train set of images is fed into the network 
in small batches (e.g. 64 images at a time). Once all the images have been 
through once, this is an epoch. The network will be trained for a certain number 
of epochs, as defined by the programmer. This number is often picked by 
taking an educated guess based on previous research and experiments in 
similar fields. Many studies will try multiple experiments with different numbers 
of epochs before finding the number that yields the best results for their data.

Between every epoch, the current network parameters are evaluated 
against the validation set to ensure that the training process is not overfitting 
to the data in the train set. If it were overfitting, then it would be learning 
features that are specific to the images in the train set and would not be able 
to generalise to new data of the same type, as in the test set. For example, 
if there were photos of a certain disease taken with light-coloured soil in the 
background, and these all ended up in the train set of images, the validation 
set with photos of that disease taken with dark soil in the background would 
highlight this. The network parameters would then readjust to ensure that it is 
not using that soil information from the train set for classifying that disease, but 
rather the disease information on the plant instead. Ideally, the train, validation 
and test tests would all contain both colours of soil.

Figure 1 An artistic representation of a deep learning workflow for image classification. 
There is an input layer that takes in labelled images and an output layer that gives 
classification predictions. In between, there are multiple hidden layers that perform 
feature extraction. Earlier in the network basic features are learned, such as lines or 
edges, and further through the network they get more and more complicated until they 
learn features which allow the network to make its predictions.
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Throughout training, the network is constantly adjusting its internal 
parameters after each batch and epoch to allow it to better make predictions 
about the images. As it learns, the accuracy of the predictions increases until it 
reaches a peak at the end of training. At this point, the network can be evaluated 
on the test set of images. This is a set of images of the same kind as contained 
in the train and validation sets, but that the network has never seen before. This 
shows how the trained network performs on brand new images to give a final 
accuracy rating. The whole process from start to finish can take a long time, 
from hours to days, to even months! This depends on multiple factors, such 
as the computing power available, the size of the network and the size of the 
dataset.

A lot of studies begin their experiments by using transfer learning 
with their datasets. This is a method that takes the knowledge learned by 
a previously trained network and applies it to the new problem. The main 
advantage of this is that it is relatively quick compared to training a deep 
learning network from scratch. Some examples of networks often used for 
transfer learning are AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy 
et al., 2014), VGGNet (Simonyan and Zisserman, 2015), ResNet (He et al., 
2016), Inception V4 (Szegedy et al., 2016a) and MobileNet (Howard et al., 
2017).

Transfer learning uses a network which has been fully trained on a large 
dataset (often the ImageNet dataset described in section 3). The pre-trained 
network is divided into two parts; the convolutional base, which is the part that 
performs feature extraction on the images, and the fully connected classifier, 
which forms predictions about the images. Depending on the method used, 
all or parts of the network are repurposed for the new dataset. In some cases, 
only the network structure is used and is retrained for the new problem without 
using the pre-trained knowledge.

3  Preparation of data for deep learning experiments
One of the biggest challenges for the successful application of machine learning 
techniques for the identification of plant diseases (or any image classification 
task for that matter) is the availability of data. The majority of these methods 
require large datasets of labelled or annotated images, which can be time-
consuming to collect and process. For example, with plant-disease detection, it 
is necessary to have a large number of images for each disease for each plant 
species that is being modelled.

One of the most famous, and largest, datasets used for image analysis 
with deep learning is the ImageNet dataset (Deng et al., 2009). This dataset 
was created for use with object recognition software. The full dataset contains 
more than 14 million images with over 20 000 categories; however, a smaller 



Published by Burleigh Dodds Science Publishing Limited, 2023.

Using machine learning to identify and diagnose crop disease 5

subset of this has been used in the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) (Russakovsky et al., 2015). This challenge ran annually 
between 2010 and 2017, encouraging participants to develop and improve 
computer vision techniques for image classification and object recognition. 
Multiple winning networks created for this competition over the years are now 
used as the starting point for hundreds of deep learning problems, including 
the problem of crop disease detection.

Collecting a dataset of images for use with any deep learning problem is 
not quite as easy as simply gathering as many images as possible by any means. 
It is important to ensure that the dataset contains appropriate information for 
the required use case. The rest of this section will discuss the factors to consider 
when preparing a dataset for plant-disease recognition and classification. These 
factors include a range of conditions, controlled versus uncontrolled capture 
conditions, image quality issues, the number of images required and labelling 
and annotation requirements.

The most widely known, and one of the only openly available datasets used 
for the recognition of plant diseases, is the Plant Village dataset (Hughes and 
Salathe, 2016). This is a collection of almost 88 000 images taken in controlled 
conditions with 38 categories, each corresponding to a plant-disease pair. 
Each image contains a single diseased or healthy leaf taken from the plant and 
placed on a neutral background and photographed under different lighting 
conditions. While this dataset was ground-breaking in the field of plant-
disease detection when it was first created, the use of controlled conditions 
in the photos means that it is not comprehensive enough to be useful for an 
automated system in field conditions.

The Plant Village dataset was useful for demonstrating the potential of 
deep learning methods for the classification of plant diseases; however, in 
order to create a model that will be useful in realistic growth conditions, it is 
now important to collect datasets which accurately represent those conditions. 
PlantDoc (Singh et al., 2020) is a dataset created to cover many of the diseases 
present in the Plant Village dataset, but the images instead cover real field 
conditions. Here, images were downloaded from the internet and checked by 
members of the team before being added to the new dataset. This resulted 
in almost 3000 images, spanning 27 of the categories from Plant Village (any 
classes with fewer than 50 samples were removed for this dataset). This is a step 
in the right direction, but there is a distinct possibility of misclassified samples 
within the dataset due to them being taken from internet searches. Also, with it 
still being a relatively small dataset spanning a lot of classes, there is still a high 
chance that not all conditions are being covered.

For studies that are looking at building a model for a certain crop, it is 
unlikely that there are already datasets openly ready and available for use. This 
means that, for each case, there will be a large collection operation required 
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prior to any numerical experiments. The result is usually a relatively small 
dataset with few categories (in some cases only two: diseased or healthy). 
While these can be useful for the problem at hand, there is still some way to go 
with generating a larger dataset to be used in a wider variety of cases.

The collection of a dataset which sufficiently covers each category can be 
a time-consuming task, often requiring the specialist knowledge of an expert 
pathologist and multiple volunteers to take the pictures. Furthermore, it is not 
simply a case of capturing a large number of images for each category, but also 
including a representative range of conditions. If the model is to be used for 
identifying diseases in the field, then the range of typical conditions that could 
be encountered in the field need to be represented. This includes:

 • the variation in crop varieties/species – for example, different leaf colours 
or sizes;

 • state of the crop – seedling, adult, flowering, mature with seed;
 • stage and severity of the disease – early to late infection, mild to severe 

symptoms;
 • weather and lighting conditions – full sun, sun and cloud, overcast, rain, etc.;
 • background information – this needs to be consistent throughout the 

dataset. Having one class with different background information to the 
rest (e.g. glasshouse instead of field) will cause issues in training;

 • image qualities – focus, depth of field, range of angles.

The main point to remember when creating a dataset for deep learning is 
that the conditions present need to be consistent between classes. Any class 
containing conditions which are not present in the others, for example, one 
class having sky in the background whereas no other does, will cause the 
network to learn the wrong information about that class and classify it based on 
the presence of sky, rather than the disease information.

Another factor to consider if working with real condition images is the 
diversity of background information, which might contribute negatively to 
the training process by distracting from the features that are of interest. If the 
images are collected in a field, for example, this may not be too much of an 
issue as the field conditions are likely to be relatively uniform. However, if the 
images are of a plant species which grows in various wild locations, then a 
vast array of background information can be expected. Where possible, the 
full range of diverse background conditions should be represented in images 
across all classes.

The number of images is also important. The number of images to aim for 
per category will depend on the complexity of the problem at hand. A simpler 
problem, for example, a binary classification problem of healthy or diseased, 
will require fewer images than a classification problem with multiple diseases 
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with similar symptoms. However, the general rule of thumb with deep learning 
datasets is the more data, the better (ideally hundreds, if not thousands, of 
images per category in our opinion). The more images the network has to 
learn from, the better its performance is likely to be. It is also best if the data is 
relatively well balanced between each category, so the network does not learn 
a bias towards one class due to it having significantly more training samples 
than the others.

One technique to increase the number of images in a dataset where it 
is not possible to collect more is data augmentation. Augmenting the data 
involves performing multiple transformations on each image to add new 
samples to the dataset. For example, an image may be mirrored, flipped 
horizontally or vertically, rotated, or shifted to create tens of new images from 
a single sample. The main drawback of this is that there is no actual new data 
created, just variations of existing data. This means that the original dataset still 
needs to contain enough variation so that the network can learn enough to 
form predictions. There are other methods for working with smaller datasets; 
however, where possible it is always better to collect more data.

After collecting all available data, it will then need to be labelled and 
collated into a full dataset. For best results, a pathologist will need to label each 
image with the correct category, either as the images are taken, or by going 
through all data and assigning categories later. This of course can be incredibly 
time consuming and can result in misclassifications within the dataset if a 
pathologist is not available. In cases where different visualisation techniques 
are being used with the dataset (see Section 5), it may also be necessary to 
annotate the data with further information (e.g. a bounding box around a 
disease lesion). This often has to be done manually on each image and is a 
huge undertaking. Once all labelling and annotation is complete, the data can 
be sorted into the train, validation and test sets and start being used with a 
deep learning model.

4   Crop disease classification
A common use of deep learning methods for crop disease detection is to 
classify images of diseased plants into pre-defined classes. This can be a 
hugely difficult task for multiple reasons. For most, if not all, diseases there is a 
wide variation in visible symptoms throughout the life cycle of the disease, with 
some symptoms being more common than others. Furthermore, there can be 
a lot of similarities in visible symptoms of multiple diseases. Consequently, less 
common symptoms can easily be misclassified as another disease.

CNNs (LeCun et al., 1999) are a type of deep learning network which have 
become popular for image classification of plant diseases (Boulent et al., 2019). 
Many studies utilise pre-defined CNN structures for their work. A few examples 
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that occur over and over again throughout the literature are AlexNet (Krizhevsky 
et al., 2012), GoogLeNet (Szegedy et al., 2014) and Inception (Szegedy et al., 
2016b); however, there are plenty of others which provide a starting point 
for almost all of the studies we will discuss. These pre-defined networks are 
all CNNs with different numbers of layers and additional features to aid with 
feature extraction.

A good place to start here is with the Plant Village dataset. Multiple studies 
use the whole or part of this dataset with their work. Mohanty et al. (2016) aimed 
to show the viability of deep learning networks for the classification of a range 
of different diseases. They performed the first deep learning experiments using 
the Plant Village dataset with two different pre-trained networks: AlexNet and 
GoogLeNet. Through training these two networks both from scratch and using 
transfer learning, with a range of image processing techniques and train-test 
splits (the split of data between training and testing), they returned near-perfect 
accuracy with their best-performing method. Using a pre-trained GoogLeNet, 
full-colour images and an 80-20 train-test split the accuracy reached 99.34%.

Much like Mohanty et al., Brahimi et al. (2017) also used transfer learning 
with the two pre-trained networks AlexNet and GoogLeNet. In this study, 
however, rather than using the entire Plant Village dataset, a subset of images 
containing only diseased tomato leaves was used. Both studies utilised the 
networks by transfer learning and by training from scratch in an attempt to 
compare the results from both methods. In the same way, as in the work of 
Mohanty et al., the best results gained in Brahimi et al.’s work were of extremely 
high accuracy, reaching 99.18% accuracy in classifying tomato diseases. Again, 
this result came from the use of GoogLeNet with pre-training, although they do 
not specify the train-test split.

Another study that made use of a subset of the Plant Village dataset is that 
of Amara  et al. (2017). They used only the banana leaf images in their work 
with the LeNet (Lecun et al., 1998) architecture. Although using a previously 
defined network, they did not use a pre-trained version, rather the architecture 
was trained from scratch with the banana leaf images. They used a range of 
train-test splits with both coloured and grayscale images. It was shown that 
the networks that used coloured images always outperform those without, 
thus showing the importance of colour information for the problem. Using a 
train-test split of 80-20, the network achieved an accuracy of 98.61%, another 
extremely promising result.

Too et al. (2019) took the whole of the Plant Village dataset and evaluated 
the performance of multiple pre-trained networks in classifying the diseases. 
They used transfer learning with some fine-tuning of VGG16, Inception 
V4, Resnet with 50, 101 and 152 layers and DenseNets (Huang et al., 2018). 
DenseNets was the best performer having gained an almost perfect accuracy 
of 99.75%.
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This almost perfect accuracy is a common occurrence in studies which use 
only images from the Plant Village dataset. Although comprehensive in that 
it covers a wide range of diseases and plant species, the images within are 
not representative of those which would be found in real growth situations. 
They contain images of leaves taken from the plant and placed on a plain 
background, thus eliminating any background information, which obviously 
would not be the case in the field. The high accuracies gained in these studies 
are impressive; however, it is unknown how any of the models would perform 
when confronted with real field data.

Ferentinos (2018) demonstrated the issues of the Plant Village dataset for 
field use in their work. They made use of multiple pre-trained networks within 
his study; AlexNet, AlexNetOWTBn (Krizhevsky, 2014), GoogLeNet, Overfeat 
(Sermanet et al., 2013) and VGGNet. The dataset used contains images taken 
from Plant Village as ‘lab condition’ images, and was supplemented with more 
images taken in the field. This resulted in a dataset of 87 848 images sorted into 
58 classes, some that contained just lab conditions, others that contained just field 
conditions and some with both. The most successful architecture in this study was 
the VGG network, which gained an accuracy of 99.53% on unseen images. Due to 
the presence of both lab condition and field condition images within the dataset 
used, Ferentinos (2018) experimented with training on laboratory condition 
images and testing on field condition images and vice versa. The accuracy of 
classification in these experiments was significantly lower than with the mixture 
of images for training. Training on field images and testing on laboratory images 
resulted in an accuracy of 65.69%, whereas the other way around resulted in an 
accuracy of only 33.27%. These figures emphasise the importance of including all 
relevant conditions within a training set for use in practice.

Although the Plant Village dataset is used regularly throughout the 
literature, there are plenty of studies which make use of data acquired elsewhere. 
Sladojevic et al. (2016) created a large dataset of images (over 30 000 in 15 
classes) by taking pictures from internet searches. The dataset included a class 
for just healthy leaves and also a class with just background images. The reason 
for this was to train their network to differentiate leaves from their surroundings. 
The network used for this study was the pre-trained CaffeNet (Jia et al., 2014) 
model. Using this method, they gained a classification accuracy on their dataset 
of 96.3%. They concluded that the accuracy for individual categories was slightly 
lower in the classes which contained fewer images. Another thing to note about 
this study is how the images were collected. As they were taken straight from 
the internet, it is possible that some of the images have been wrongly classified 
which would have affected the accuracy of the network.

A study by Lu et  al. (2017) used a relatively small dataset of rice 
disease images (500 images) to train CNNs inspired by LeNet and AlexNet 
architectures. Although they did not use the actual networks for either 
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training from scratch or transfer learning, they did create a very similar 
network to those already defined. The accuracy gained for this network was 
95%; while still a very encouraging result, this is slightly lower than many of 
the results discussed before. A reason for this could be to do with the size 
of the dataset used; with only 500 images spanning 10 categories, it could 
be hard for the network to learn all the characteristics present in each of the 
categories.

Alongside their own network modelled on a combination of AlexNet and 
GoogLeNet, Liu et al. (2018) utilised four pre-trained networks on their apple 
leaf disease identification problem; AlexNet, GoogLeNet, VGGNet and ResNet. 
They compared their network results to those obtained through transfer 
learning with the pre-trained networks and found that their model outperforms 
the known networks. The final accuracy recorded for their network was 97.62%, 
a percentage point higher than the next best performer VGGNet. Many studies 
make use of pre-defined networks; however, Liu et al. show that in some cases, 
defining a new network will gain a better performance. Often new networks 
will be inspired by one or several of the widely known networks (like in Lu 
et al., 2017), but this might be the best way to get all the best components for 
tackling the problem.

The train-test split is important for ensuring a network has enough data 
to learn from, while also having enough to for evaluating its performance. It 
is also important to include validation where possible. Often the validation is 
incorporated into the train part of the split when described in the literature.

Oppenheim et  al. (2019) experimented with different train-test splits to 
find the best combination for their work detecting potato tuber disease. Their 
dataset contained 2465 images with 4 diseased and 1 uninfected category. 
They found that, unsurprisingly, more training data increased accuracy. The 
model that performed best on the test data used a 90-10 train-test split and 
gained an accuracy of 95.8%. Many studies elect to stick to an 80-20 split in the 
training and test data, in this case the higher amount of training images may 
improve training, but the lower amount of test images may not have contained 
enough images to fully show the performance of the network considering the 
size of the original dataset. A 90-10 split may be more suited to a larger dataset 
where the test set would contain more images.

The studies discussed in this section have shown the great potential for 
deep learning to be used for crop disease detection. The Plant Village dataset 
was a breakthrough in the field, which has seen multiple networks classify its 
images with incredibly high accuracy. Furthermore, other works have used 
more complex images while still gaining promising results. There is a lot of 
room for expanding these techniques for use with more diseases and more 
crop types.
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5  Different visualisation techniques
Not all studies use only the image and the class label in their work. There are 
plenty of studies which use different visualisation techniques to try and improve 
the abilities of deep learning for plant-disease recognition tasks. As there are 
many different techniques being used throughout the field, we will discuss only 
a few in this section.

The first technique we will mention is the use of segmentation of images. 
This is where images are taken as usual and are cropped into smaller pieces. 
Ramcharan et al. (2017) collected a dataset of cassava leaf images with disease 
or pest damage in real field conditions. They ended up with two usable datasets: 
the first containing 2756 original cassava leaf images and a second with 15 000 
segmented images containing smaller leaf sections (leaflets). Transfer learning 
with Inception V3 was used with three different classifiers on both datasets, with 
the best performer giving an accuracy of 93% on the leaflet dataset. It is not 
surprising that the larger dataset yielded better results as the networks were 
able to train on more data, plus the images were a lot less complex than those 
of the full cassava leaves.

In a slightly different approach, Ma et al. (2018) used image segmentation 
techniques to cut out the visible symptoms in images of cucumber diseases. 
These techniques were able to distinguish between lesion and background 
information and so crop away everything but the lesion. This resulted in a 
collection of images of only the visible symptoms placed on plain black 
backgrounds. They collected their dataset using images from the Plant Village 
dataset and from forestry images (https://www .forestryimages .org/) as well as 
supplementing them with their own images collected in real field conditions. 
After segmenting, they augmented the data to give 14 208 images for training 
a deep CNN. They gained an accuracy of 93.4% using their model, which 
outperformed AlexNet when they were compared. This is one of the lowest 
accuracy scores in all the studies using Plant Village images. It seems that the 
segmentation methods used here do not add anything to the process other 
than a higher preparation time for the dataset.

From the two approaches taken by Ramcharan et al. (2017) and Ma et al. 
(2018), it is clear that in some cases segmentation of images can be a useful 
tool. For complex images with lots of background information, segmenting 
the images to create smaller, less complicated samples will likely yield better 
classification results. However, for images taken in controlled conditions, 
segmenting may be adding an unnecessary, time-consuming step to the 
process. It is best to look at each problem on a case-by-case basis and decide 
based on the data whether the additional time injection for segmentation will 
be worthwhile.

https://www.forestryimages.org/)
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Zhang et al. (2019a) also used a different method for classifying diseased 
plant images. They took the three channels of RBG images and fed them each 
into a different CNN for each channel. The outputs of the three CNNs were 
then sent into a fully connected classifier together to get a single classification. 
The idea was to utilise all the colour information in each image for better 
classification power. Each of the CNNs had the same architecture; however, 
different learned weights were obtained due to the different colour information 
in each of the channels; red, green and blue. Different CNN architectures (their 
own model, DNN, LeNet-5 (Lecun et al., 1998) and GoogLeNet) were tested 
on the Plant Village tomato disease images, while a cucumber disease image 
dataset containing 500 images were used to test different train-test splits. The 
best results gained in this study used a 70-30 train-test split with their own 
network architecture and gave a classification accuracy of 94.27%. Although 
this is still a high disease recognition rate, it is not as high as some of the other 
studies show suggesting that better results can be gained when all three 
channels are fed into the same network.

Some studies like to include lesion location information in their work. For 
example, DeChant et  al. (2017) created a dataset containing 1834 images 
of healthy and northern leaf blight-infected leaves of maize plants. In the 
infected images, each lesion was annotated with a line which was used as 
extra information for training the networks. They used a three-step method for 
classifying their images, first taking small portions of the images and training 
to detect the presence of lesions in these images. The second step used the 
networks trained in step one to create heat maps of the probability of parts 
of the image containing a lesion. The final step used these heatmaps to train 
a network to classify an image into either containing lesions (infected) or not 
(healthy). This method managed to get an accuracy in the full image classification 
of 96.7%. This result is extremely encouraging considering the use of images 
containing much background information. It does however only evaluate the 
method on two classes, healthy or diseased. It would be interesting to see how 
the accuracy would be affected by using this technique with more classes.

The work by DeChant et al. (2017) also made use of heatmaps. These can 
be an especially useful tool for ensuring that a network is functioning correctly. 
A heatmap shows the parts of the image that the network predicts to be most 
likely to contain disease information. These parts appear ‘hotter’, so on a blue–
red scale, red sections are more likely to contain a lesion, whereas blue is the 
background material. From these heatmaps it is easy to pick out issues in the 
data; for example, if there is a red patch on a piece of background material 
in an image, it indicates that the network is probably not using the correct 
information to drive its classifications but is using background information 
instead.
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There are various other visualisation techniques used for classifying crop 
diseases, each with their own merits and pitfalls. It would take a long time 
to go over them all! We have added a paper to the ‘Where to look for more 
information’ section which contains plenty of references to studies using 
different visualisation methods in their work for anyone who wishes to find out 
more.

6  Hyperspectral imaging for early disease detection
A relatively new addition to the field of deep learning is the use of hyperspectral 
imagery. Hyperspectral images capture information across the electromagnetic 
spectrum, not just the visual spectrum. In many cases there can be ‘fingerprints’ 
left by certain objects or substances (such as a disease) in different spectrums, 
which are not visible in regular conditions. It is for this reason that hyperspectral 
imagery has started to be deployed for the early detection of crop diseases. 
The idea is that, before there are visible symptoms on the plant, there may be 
unseen effects across other spectrums that would allow for early diagnosis and 
treatment before the disease got more severe.

Studies by Wang et  al. (2019) and Jin et  al. (2018) took hyperspectral 
images of sweet peppers with tomato spotted wilt virus and wheat with 
fusarium head blight, respectively. They both performed their experiments by 
taking the pixels of the images to train their networks. The pixels were labelled 
with background, diseased or healthy. This method required a small number of 
full hyperspectral images due to the number of pixels contained within each 
image. Both studies gain promising results with their small datasets, with Wang 
et al. gaining an accuracy of 96.25% on images of plants taken prior to disease 
symptoms being visible.

Nagasubramanian et  al. (2018) worked with hyperspectral images of 
soybean crops with and without charcoal rot. They collected a dataset of 111 
images, which were split into smaller data patches to create a larger dataset of 
1090 training images and 539 test images. There appears to be a large bias 
towards the healthy class in their dataset; however, this did not appear to cause 
any problems with training. They used a CNN as their model, which gained an 
accuracy of 95.73% when presented with the test images.

In a similar experiment to Nagasubramanian, but with Aphis gossypii 
Glover infection of cotton leaves, Yan et al. (2021) used CNNs with hyperspectral 
images. They performed multiple experiments with RBG images and full 
hyperspectral images, comparing the performance of the CNNs against other 
machine learning methods. In all cases, they found that the CNNs gained the 
highest accuracies. They also found that the hyperspectral images gave better 
results than just RGB images.
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An interesting study by Zhang et al. (2019b) utilised an unmanned aerial 
vehicle for collecting their hyperspectral images. Five images were taken of 
full wheat plots, with and without yellow rust, from a height of 30 m. These 
images were segmented into 15 000 smaller hyperspectral image blocks which 
were used for training and evaluating their network, which combined features 
of Inception and ResNet. Each block was labelled either as containing rust, 
healthy plants or other (e.g. soil or road). After the model had been trained 
on 10 000 of the data blocks, it achieved a classification accuracy of 85% on 
the remaining 5000 test data blocks. The next step in their process involved 
mapping the data blocks back onto the original images. Here the sections that 
were predicted as rust areas were highlighted in red to show an infection map 
over the entire plot. This is extremely useful for showing the infection levels in a 
full plot and methods like this could possibly be utilised for scoring the amount 
of disease present as well as classification.

Although there is not a great number of studies already utilising this 
technology for plant-disease detection, it shows great promise and there is 
plenty of room for growth in the future. As always, the availability of data is 
a bottleneck for advancement. Hyperspectral imagining requires a lot more 
preparation than simply collecting photos with a regular camera. For example, 
environmental factors such as light and heat levels can have an effect on the 
different wavelengths, thus affecting the collected images. Furthermore, 
hyperspectral imaging cameras can be a costly investment, meaning they 
are not readily available for everyone to be able use in their work. A positive, 
however, is that for some methods, these studies tend not to require as large 
a dataset as those using regular visible spectrum images. A smaller number 
of images can be segmented or taken at pixel level to give a large dataset for 
training and evaluation.

7   Case study: identification and classification of 
diseases on wheat

In this section we will discuss some recent advances. In this work we used deep 
learning methods for the identification and classification of wheat diseases in 
field conditions. Wheat is a staple crop, vital for feeding many people across 
the world. Therefore, it is important to be able to control any diseases and 
mitigate any yield losses.

Alongside a healthy category, we included four of the most commercially 
important wheat diseases for the UK and other countries in our dataset: Yellow 
rust, otherwise known as stripe rust, caused by the basidiomycete fungus 
Piccunia striiformis f.sp. tritici (Pgt) (Liu and Hambleton, 2010). Septoria, 
otherwise known as Septoria leaf blotch or just Septoria, caused by the 
ascomycete fungus Zymoseptoria tritici (formerly Mycosphaerella graminicola) 
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(Hardwick et al., 2001). Brown rust, caused by Puccinia triticina (Goyeau et al., 
2006; Bolton et al., 2008) and powdery mildew, caused by Blumeria graminis 
(Dubin and Duveiller, 2011).

The most familiar symptoms of yellow rust are the easily recognisable 
yellow/orange pustules which form in stripe patterns on the leaves of wheat. 
Later in its life cycle, however, when the yellow/orange pustules fall off, necrotic 
lesions with black telia remain on the leaf. It is at this stage that yellow rust can 
be easily mistaken for mature Septoria which appears as necrotic lesions which 
follow the veins of the leaf containing many small, black pycnidia. To make 
matters even more complicated, brown rust appears as orange/brown pustules 
on wheat leaves, which can be similar in appearance to the early-stage yellow 
rust pustules. Figure 2 shows examples of these diseases on wheat leaves. 
Although visibly different from the other three diseases, the white powdery 
pustules of powdery mildew still cause problems in many parts of the world, 
making it an important foliar wheat disease and worthy of inclusion in a wheat 
disease detection model.

Our first important step to creating our model was the collection of a viable 
dataset of images to use for training. For our model to be useful in the field, it 
needed to be trained using images which cover the range of conditions which 
would be encountered in the field, for example, different weather and light 
conditions, different varieties and colours of wheat, growth stages of the plants 
and life cycle stage of the diseases. In this experiment, we were looking at only a 

Figure 2 Examples of wheat leaf diseases. (a) Brown rust appears with orange/brown 
pustules along the leaf, which can be confused with the yellow/orange pustules of (b) 
yellow rust. (c) Yellow rust where the orange pustules have fallen off leaves necrotic 
lesions that follow the veins of the leaf. This is easily mistaken with (d) mature Septoria, 
which also appears as necrotic lesions that follow the veins of the leaf.
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single disease at a time, therefore the sites for photographing diseases needed 
to be carefully selected by a pathologist to contain only one disease at a time.

Having collected a significant number of images for each category, the 
photos taken went through manual quality control. Any images which were 
blurry, contained no important information or where the important information 
was obstructed were removed. Images which were thought to contain multiple 
diseases or where it was not clear which disease was present were also 
removed. The resulting dataset contained between 2000 and 5000 images 
per category, providing a vast array of conditions and complex background 
information, as would be expected in the field. Figure 3 shows example images 
from the dataset.

We first used transfer learning with four pre-trained networks: VGG16 
(Simonyan and Zisserman, 2015), Inception V3 (Szegedy et al., 2016b), 
Mobilenet (Howard et al., 2017), Xception (Chollet, 2017). Each had been 
pre-trained using the ImageNet dataset. These experiments allowed us to 
determine whether a deep learning model would be able to learn to classify 
these diseases with such complex input data. The results for each pre-trained 
model were between 85% and 92% classification accuracy.

Figure 3 Example wheat disease images collected for the dataset. The images contain 
complex background information including soil, other plants and shadow. From left to 
right: top – brown rust, healthy, mildew; bottom – yellow rust, Septoria.
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These results gave us the confidence that deep learning methods would 
work for this problem. We then developed a bespoke model for this problem 
using a CNN architecture. The model took several days to train on all of the 
available training data, before being evaluated on the test dataset. When 
challenged with the new images from the test dataset, our trained model 
performed with a classification accuracy of over 97%.

We decided to compare the performance of our model against that of a 
selection of trained pathologists. Five participants, with differing backgrounds 
and specialisations, were included in the experiment. A smaller subset of the 
dataset was used taken from the test set, including a number of images that 
were incorrectly classified by the network. Each participant was shown the 
images one by one on a computer screen, they were asked to assign a tag 
corresponding to their classification of the image. Their classifications were 
collected and compared with those from the network and the results showed 
that the network outperformed each member of the group, gaining the highest 
classification accuracy.

Deep learning networks with the appropriate architecture have the power 
to deal with real field images containing complex background information. Our 
resultant wheat disease classification network will be useful for identifying a 
disease in the field, and so making it easier to take appropriate action. For the 
purpose of breeding for disease resistance, it would be beneficial for a model 
to be able to quantify the amount of disease as well as identify and classify 
different symptoms.

8  Conclusion and future trends
The control of crop diseases is becoming more important than ever as the 
population of the world continues to increase. For farmers and agronomists, 
the first step to controlling a disease is identification, which, without access to 
a trained pathologist, can be difficult in itself. Deep learning methods open the 
door to automated crop disease detection, which will be game-changing for 
the treatment and prevention of diseases across the globe.

Recent research had made great strides in classifying images of diseased 
plants taken in controlled conditions, gaining some extremely high accuracy 
results. There has also been plenty of progress in using real field images to 
train networks. It is clear that deep learning techniques are more than capable 
of handling the task of disease detection and classification. The main obstacle 
holding back this area of research is the availability of data. Collecting a 
useful dataset with sufficient samples, covering enough conditions can be a 
challenging and time-consuming task.

There are a few directions that this research could take in the future. The 
first is looking at crops which are infected with multiple diseases. At present, 
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very few, if any, studies use images that contain multiple diseases, and it is 
easy to see why as the presence of multiple diseases complicates the problem 
substantially. However, it is a very common occurrence in the field to have more 
than one disease present. Therefore, it is important that deep learning networks 
are able to handle this if they are to be deployed in the field to aid farmers and 
agronomists.

Another direction that could be taken in the future is the use of deep 
learning for quantifying the amount of disease present as well as classifying it. 
This will be an extremely valuable tool for breeders looking to breed varieties 
of staple crops with resistance to important diseases. Currently, pathologists 
are required to spend a lot of time scoring the diseases manually on thousands 
of plots, so automating this process would be beneficial for them in freeing 
up time for other important tasks. There are currently a few studies that have 
started working on this problem, but there is plenty of room for growth and 
improvement.

This work was supported by the BBSRC Norwich Research Park Biosciences 
Doctoral Training Partnership as a CASE Award, [grant number BB/S507428/1], 
in collaboration with Limagrain UK, KWS UK Ltd and RAGT Seeds Ltd.

9  Where to look for more information
 • A clear introduction to deep learning and how to create your own deep 

learning networks – ‘Deep Learning with Python’ by Francois Chollet.
 • About dataset size and variation – Barbedo (2018) ‘Impact of dataset size 

and variety on the effectiveness of deep learning and transfer learning for 
plant disease classification’ in Computers and Electronics in Agriculture.

 • More references to different visualisation techniques – Saleem et al. (2019) 
‘Plant Disease Detection and Classification by Deep Learning’ in Plants.
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