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1  Introduction

Robots can be used in several types of farms to assist or replace human work in 
heavy, dangerous, dull or high accuracy needing tasks, or when the availability 
of labour is limited (Basri et al., 2021). Automatic milking systems (AMS), also 
called milking robots, are widely used service robots in livestock farming, 
together with increasingly common feeding and cleaning robots (John et al., 
2016; Stülpner et al., 2014). In horticulture, several different approaches for 
harvesting robots in greenhouses have been introduced (Bachche, 2015), 
and farm implementations are gradually gaining ground (e.g. Ridder (no 
date)). Weeding and pest control robots have been developed for orchards 
and vineyards (Horizon The EU Research and Innovation Magazine (no date)). 
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Diverse pot- and bin-handling robots for both greenhouses and orchards 
have been designed to assist in heavy and monotonic tasks (Ye et al., 2018). 
Also in arable farming, several commercial field robots have been introduced 
and are available in markets: drones for remote sensing and ground robots 
capable of harrowing, weeding, fertilising and seeding (e.g. AgroIntelli (no 
date); FarmDroid (no date)). However, the adoption of robotic systems in use 
has been slow in arable farming.

Meaningful use of robots in farms requires smart, user-friendly and the 
circumstance-adaptive applications. This is difficult to achieve since farms are 
demanding worksite environments for autonomous machines. Farm operations 
link with several farm tasks, heterogeneous machinery and decision support 
systems and people and animals (Fountas et al., 2015; Köksal and Tekinerdogan, 
2019). Agricultural robots need to be well connected with other actors in the 
farm operations they execute as well as with supporting services (Berenstein 
and Edan, 2017; Vasconez et al., 2019; Anagnostis et al., 2021). Robots also 
need to mediate data from their operations for further use in food systems since 
today’s data-driven food systems require data or data-based information from 
agriculture about its production processes, i.e. field operations and production 
environments to function efficiently and safely, and to improve sustainability in 
a documented manner (Miranda et al., 2019; Corallo et al., 2018).

For better adoption, especially smallholders benefit from robotic systems 
that provide well-tailored, easy-to-use system entities. Smallholders have 
limited economic capacity to employ workers, especially when the labour is 
needed only seasonally. Usually, the farmer himself executes the main part of 
farm tasks and takes care of farm management and businesses in parallel. To be 
useful working partners, the robots, as any automation system, need to be well 
connected to other farm systems and to the robot’s maintenance systems, and 
the provision of the robot’s services needs to fit well to often individual farm 
circumstances and farmer’s preferences (Pesonen et al., 2008).

In this sense, operation environments in arable farming set the most 
challenging flexibility and configurability demands for robot systems. Arable 
farms vary in crop selection, production strategies and methods, farm size and 
technological infrastructure thereof. Arable fields concern large land areas 
in diverse topographic and (micro)climate environments (The World Bank 
(no date)). Thus, the operational environments in arable farming cannot be 
standardised in a way it is possible in indoor animal production or greenhouses. 
Farm fields locate often in rural areas and in the distance from a farm’s physical 
operation centre, which challenges functions for monitoring, control and 
logistics of robot systems. There is no electricity network available in the 
fields, and since arable fields are operated with moving machines, the needed 
communication requires always wireless connections. Arable farming worksites 
are open environments that expose robots to varying weather conditions; 
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moving obstacles like people, animals and other machines; and suddenly 
changing working partners due to which connections to supporting services are 
essential (Steen et al., 2012; Kaloxylos et al., 2012; Goap et al., 2018). The ability 
to carry out rapid reactions and proportionate changes in plans challenges not 
only the connections to supporting network of services and other machines 
but also the intelligence of robot systems. Thus, this chapter focusses mainly on 
arable farming and issues encountered there.

The increased challenge is faced by the robot entrepreneur who provides 
RaaS for several farms. This means that the RaaS system must connect with 
the various machines of the customer, data sources and Farm Management 
Information Systems (FMIS). This usually means that the Robot entrepreneur’s 
Management Information System (RMIS) must be able to connect with ‘things’ 
and services provided by different brands. Figure 1 illustrates the problem field 
of such a complex challenge. The complexity is increased when the RaaS system 
consists of multiple robots operating as a fleet in the same farm operation.

The RaaS system needs to connect with other systems to communicate in 
several operational levels of farming systems, i.e.:

 • farm tasks, which include from a farm or field viewpoint what task should 
be done, where and when;

 • fleet tasks, which indicate the allocation of farm tasks to different robots;
 • robot tasks, which contain waypoints for navigation, mission parameters 

and main actions; and
 • detailed robot tasks containing detailed instructions for the robot’s 

actuators.

Figure 1 An illustration of a complex connectivity environment of robot systems from 
the viewpoint of RaaS (Robot as a Service) provider. The RaaS entrepreneur’s Robot 
Management Information System (RMIS) must be able to communicate with several 
customers’ Farm Management Information Systems (FMIS), Internet of Things systems 
and directly with robots and other machines and sensor systems in customers’ fields. Data 
connections are depicted with arrows. Robot entrepreneur and farmers have grouped 
their individual sets of services as Service Frameworks.
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From farmers’ and robot entrepreneurs’ points of view, there is a need to use 
and control the systems that are needed in everyday work. Internet of Things 
(IoT) and further the concept of Internet of Robotic Things (IoRT) (Ray, 2016) 
bring possibilities to include a growing number of services to farms’ and 
entrepreneurs’ toolboxes. To maintain awareness of ongoing operations and 
forecasts and adjust plans accordingly, there is a need for a Service Framework 
that offers a single access point to diverse user interfaces (UI) of the systems in 
use (Fig. 1).

The connectivity and intelligence of robot systems contribute to efficient, 
reliable and safe operation. Efficient and reliable operation requires that 
the robot system operates correctly even in suddenly changing operating 
circumstances and environments. The robot system can recover fast from 
disturbances, with minimal manual interference by the robot operator. Remote 
monitoring and notifications of deviations from plans create trust in the system. 
Robots must be able to operate safely as a part of various collaborating machine 
fleets and workforce. The functionalities must support the overall easiness to 
adopt and use of robot systems and economic viability of use.

The desired functionalities demand advanced connectivity of robots 
within a robotic system and with their support systems like robot IoT platform, 
FMIS, RMIS and possibly other supporting (AI) systems and data sources. The 
networked connections are essential to enable timely and correct autonomous 
decision-making through advanced distributed intelligence. Dyke Parunak 
(1994) explains that a system utilising distributed intelligence is a multi-
agent system where ‘the autonomous agent approach replaces a centralized 
database and control computer with a network of agents, each endowed with 
a local view of its environment and the ability and authority to respond locally 
to that environment. The overall system performance is not globally planned, 
but emerges through the dynamic interaction of the agents in real-time’. In 
agricultural environments, also the edge computing paradigm (i.e. Bierzynski 
et al., 2021) i.e. the sharing of the computational load among different network 
nodes as well as distributed problem-solving are relevant aspects of distributed 
intelligence.

The following sections deepen the views on how key challenges are 
addressed in agricultural systems. The system parts handled in this chapter are 
shown in Fig. 3. The system architecture is described in Section 2. The challenges 
of communication and interfacing methods of robots and their support systems 
are dealt with in Sections 3 and 4. Timely analytics and decision-making are 
discussed in Sections 5 and 6. Access to various farm- and business-specific 
data sources and services is handled in Sections 7 and 8. Section 9 gives a 
practical example of solving.
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2  Robotic system architecture

Along with the Industry 4.0 era, robots are increasingly part of connected 
machinery or service systems in industrial production environments. It 
requires the ability of robots to function in meaningful ways, to integrate into 
diverse production chains and to operate efficiently and safely in demanding 
conditions. IoT has been one of the main technological concepts of Industry 4.0. 
As Ray (2016) abstracts, IoT allows a massive number of uniquely addressable 
‘things’ to communicate with each other and to transfer data using existing 
internet or compatible network protocols. The concept of Cloud Robotics 
increases robots’ processing power and data needs, i.e. by utilising distributed 
computing and data sources and BigData analysis (Ray, 2016). The concept of 
the IoRT combines these two concepts, providing means to support, control 
and monitor activities at deployment sites like agricultural fields (Khalid, 2021; 
Villa et al., 2021).

The architecture of IoRT consists of several layers, including typical hardware, 
network connectivity, internet connectivity, infrastructure for the robotic platform 
and cloud platform support, and application layers (Ray, 2016; Batth et al., 2018). 

Figure 2  Internet of Robotic Things architecture overview after Villa et  al. (2021). The 
dashed line depicts the focus of this chapter.
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The layers enable composability of the system, context awareness in operations, 
virtualised diversification, interoperability, dynamic and self-adaptive operations, 
geo-distribution of data and data processing, and ubiquitous network access. 
Villa et al. (2021) described the IoRT architecture overview by three main layers 
(Fig. 2): (1) physical layer including robots, sensors and actuators; (2) network 
and control layer including communication protocols, controllers and cloud data 
storage; and (3) service and application layer including application protocols, 
cloud computing and machine learning (ML).

To meet the challenges presented in Section 1, the concept of IoRT is 
evolving to support networked co-operation models between business entities 
and their heterogeneous systems (FMIS, RMIS and AI Service), as indicated in 
Fig. 3, in which the architecture includes distributed AI, data sovereignty and 
data ownership respecting data space infrastructure for agile data connections, 
multi-robot systems (MRS) management and service compositions as service 
frameworks.

3  Communication networks

In IoRT, robots are extended with functionalities in the cloud. By definition, it 
involves the need to be connected to the Internet and certainly, the Internet 
is the most important communication network of robots and the agriculture 
domain, too. In the case of agricultural robots, the main challenges related to 
the Internet have been the unpredictable delays of the network and the ‘last 
mile connection’ that needs to be wireless when agricultural robots perform 
their actions in fields. Recently, for example, the need to transmit large image 
files or video and the need to use external third-party services is creating new 
challenges with respect to transfer capacity, privacy and safety (Guo et al., 
2020; Kaknjo et al., 2018).

Originally, consumer electronics have been the main driving force in 
the development of communication networks, especially cellular networks, 
i.e. mobile phone networks. However, in recent times, the requirements for 
the development of cellular networks have come from applications other 
than consumer applications. Industrial applications such as robotics may be 
more demanding than consumer applications in terms of low latency, high 
bandwidth, low power consumption or secure connection (i.e. Backman et al., 
2019). The concept of cellular networks was developed by Bell Laboratories 
in 1947 (Asif, 2018). However, the first generation (1G) of commercial cellular 
networks was not introduced until the 1980s. The 1G networks were analogue 
systems and are no longer operational. However, the second-generation (2G) 
digital networks, which were introduced in 1990s, are still operational. Before 
the introduction of 2G networks, the European Telecommunications Standards 
Institute (ETSI) was founded in 1988 (ETSI, 2022). The Global System for Mobile 
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Communications standard, which is the basis for 2G networks, was the first of the 
standards developed and published by ETSI. To provide worldwide coverage 
of technology, seven telecommunications standard development organisations 
(ARIB, ATIS, CCSA, ETSI, TSDSI, TTA and TTC) have agreed to co-operate in 
Third Generation Partnership Project (3GPP, 2022). The first 3G networks were 
introduced in 2001 and the successor 4G in 2009. The latest generation, 5G 
networks, was launched in 2019 (Tang et al., 2021). All these technologies are 
operational at the same time. 4G was the first mobile broadband technology to 
enable 100 Mbps or higher data rate. The 5G systems are expected to provide 
a 20 Gbps peak data range and enable mission-critical applications that require 
ultra-high reliability and low latency (Asif, 2018).

In cellular networks, the data is transferred to public networks through the 
internet. In some applications, such as remote operation solutions or robot 
collaboration, this might be a problem if low latency, reliability and security are 
needed. Virtual Private Networks and other similar technologies are possible 
to use, but still the data is essentially transferred together with all other traffic 
that uses the same networks. In the future, 5G technology can be also used to 
construct wide-area private networks (Ericsson, 2019), but for short-range (<100 
m) wireless communication, there are also other technologies developed. The 
Wireless LAN (WLAN) technologies are based on the IEEE 802.11 standards 
which contain several different protocols (IEEE 802.11). With WLAN technology, 
it is possible to build local closed private networks for specific use.

In agriculture, Agricultural Industry Electronics Foundation (AEF) is the 
organisation that develops guidelines for new communication technology 
standards (AEF, no date) and initiates the standardisation process in ISO. 
For standardisation of wireless communication between tractors and other 
entities, a dedicated workgroup in AEF exists. AEF has identified the use 
cases where wireless communication is needed and the requirements that 
those use cases set (AEF, 2022a). However, technological choices are still 
open, but the developments of road vehicles are followed. In the automotive 
industry, Vehicle-to-Everything (V2X) communication technologies have been 
developed for communication between a vehicle and other entities. The 
original V2X technologies were based on WLAN technologies (IEEE 802.11p-
2010), but more recent development C-V2X has used cellular technologies 
and is expected to use 5G networks (3GPP, no date; Christopoulou et al., 
2023). C-V2X technologies are interesting to employ also in agriculture since 
C-V2X is able to directly connect individual vehicles within the same area 
and also enables the development of cooperative intelligent systems using 
conventional mobile network (GSMA, no date; HKT, 2020), and the first use 
cases for agricultural machinery have been introduced by commercial actors 
(Autotalks, no date).



Advances in connectivity and distributed intelligence 9

Published by Burleigh Dodds Science Publishing Limited, 2023.

Highly accurate real-time positioning is an essential part of robotic 
operations. The backbone of the global level positioning is the GNSS (Global 
Navigation Satellite System). Single GNSS positioning is inaccurate. High-
accuracy GNSS systems (Ogaja, 2022) such as real-time kinematics GNSS 
require communication between the satellite receiver and service-providing 
parameters needed to determine precise coordinates for the position. 
Methodologies such as PPP (precise point positioning) that require not only 
a single GNSS but also precise measurements of the GNSS satellites’ orbits 
from external sources are also applied in robotics and autonomous navigation. 
Typical communication networks with networked transport of RTCM via internet 
protocol (Lenz, 2004) or separate radio links are used with the accurate GNSS. 
Solutions such as satellite-based augmentation system do not need two-way 
communication. Generally, GNSS-positioning technologies are becoming 
smaller, cheaper and more accurate. However, high-precision positioning relying 
on smartphone devices is still challenging (Zangenehnejad and Gao, 2021) 
but is under constant development. The current challenges include multipath 
errors due to polarising antennas, frequent cycle slip (signal interruption) and 
missing signal phase observations, and lack of phase center offset and variation 
information (Zangenehnejad and Gao, 2021). GNSS vulnerability (Zidan et al., 
2020) remains a great challenge.

4  Internet of things to link robots

IoT concept has been widely adopted in almost all kinds of systems, industrial 
and private. IoT is an important integrating technology also in smart farming 
(Verdouw et al., 2016). Lezoche et al. (2020) lists that IoT has positive impacts on:

 • functionality (sensing, monitoring, controlling);
 • economics (operational efficiency);
 • environment (enhanced farming methods, resource efficiency);
 • social issues (endured certification schemes in food chains, less manual 

labour);
 • business (new business models and collaboration); and
 • technology (low-power wireless sensors and machine-to-machine (M2M) 

connectivity).

In the same review, capital investment costs, especially for smallholders, user 
acceptance and current lack of technical skills, and technical issues like lack 
of interoperability and connectivity in rural areas, absence of data processing 
power, unclear data governance (data ownership), decentralisation, among 
others are listed as challenges.
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In the case of agricultural robots, the IoT concept has two roles. First, it can 
provide data for the robot, and second, the robot itself can be considered as 
a thing connected to internet. Today’s IoT solutions are typically cloud services 
that:

 1. collect data from sensors and devices;
 2. store the data both in databases meant to provide contextual information 

from some specific place (context brokers) and in time series databases 
of individual data sources; and

 3. provide means to analyse the collected datasets using data analytics 
and artificial intelligence (AI) services.

The IoT today can be considered as a platform, on which smart applications or 
cyber-physical systems are built.

The origins of IoT are different and consist of three main concepts. The first 
concept, the networked things, is to combine small digitalised or computerised 
physical appliances (i.e. things) into a networked system. M2M communication 
was the main enabler that allowed communication within the group of machines 
and devices, and when at least one point (machine or device) of the network 
was connected to the internet, the other ‘things’ were connected as well. The 
second concept was to see the connected thing as a service that could be 
accessed via a web browser. This approach called the Web of Things creates 
an application programming interface (API) to the ‘things’ enabling a user to 
access or manipulate the ‘things’ through it. The main difference compared to 
the first approach is that the ‘thing’ is not considered as a node in a network but 
as a service. The third concept was to connect things that do not have digital 
interfaces to internet. The unique identifiers in the form of codes and tags were 
used to connect the physical things to data that represented them or to the 
service that was linked to them. Bar codes, QR codes and Bluetooth beacons 
transmitting digital identifiers of things to be sensed by Bluetooth devices were 
the first techniques to associate objects with digital services. Later, for example, 
image recognition has partly removed the need for specific codes.

The Internet of Things–Architecture Reference Model (IoT-ARM) has 
been the baseline for the development of IoT platforms (Bauer et al., 2013). 
IoT-ARM defined the five basic models of IoT system architecture: domain 
model, information model, functional model, communication model, and trust, 
security and privacy model. The IoT platforms have largely been developed 
based on the IoT-ARM. The FIWARE platform (FIWARE no date) is an open-
source platform for smart solutions, including smart agriculture. It was based 
on extending the M2M communication model with virtual models of real-
world entities. Its main components are an NGSI protocol that connects 
system modules together, a Virtual Entity model for managing the data of 
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connected objects, and generic enablers such as a context broker, a time-series 
database and other functionalities that provide, for example, data analytic 
and visualisation services for applications. FIWARE has been applied in many 
agriculture solutions (Rodriguez et al., 2018; Corista et al., 2018). The smart 
objects for intelligent applications project extended the IoT towards smart 
spaces, semantic interoperability and LinkedData (LinkedData, no date). The 
idea of smart spaces was to create an IoT data-sharing environment for limited 
physical places and to enable the data-centric creation of smart services in it 
(Kiljander et al., 2014). Semantic interoperability is the ability to share data with 
unambiguous shared meaning. This is typically achieved by using common 
ontologies and semantic data models that are models where data elements are 
linked with the definitions of their meaning. When the links given in ontology 
models are provided between data elements, we end up with the graph model 
of data called LinkedData. Since these early solutions, the IoT platforms have 
evolved to become application domain-specific services that users can connect 
to with a huge variety of sensors and communication technologies and which 
provide advanced services for implementing cyber-physical systems (Chen, 
2020; Farooq et al., 2020; Ojha et al., 2021; Ray, 2016).

The future IoT has two main roles. First, it provides means to share data of 
the physical world in the cyber world and enables analysis and optimisation of 
large-scale systems of systems. Second, it provides means to create advanced 
situational awareness and physical interaction in more local contexts and 
thereby allows developing more intelligent and autonomous robotic systems 
(Ploennigs et al., 2018). Digital twins are software models of real systems that 
are either targeted to analyse, simulate or extend the physical systems. The 
main use has been, for example, in maintenance, where the wearing of parts 
can be analysed using simulation models (Pylianidis et al., 2021). Currently, IoT 
feeds digital twins with real-world data, but the trend is in expanding the use of 
digital twins towards the exploration of alternative futures that can be a basis 
for better decisions today (Verdouw et al., 2021).

5  Distributed intelligence

5.1  Artificial intelligence

The evolution of humankind is permeated by revolutions that transform radically 
the way of life, relations and the environment. It is impossible to understand 
current societies, economies or philosophical and political movements 
without considering the impact of the cognitive, agricultural, scientific and the 
three industrial revolutions. Currently, the world is at the dawn of the fourth 
industrial revolution and many experts predict that it will bring disruption and 
changes of a magnitude never seen before in history (Xu et al., 2018). The 
convergence in the same temporal window of a great number of advances in 
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fields like computer systems, telecommunications, biotechnology, photonics, 
nanoelectronics or materials engineering has enabled the development of new 
technologies with applications in a wide variety of verticals. Relevant examples 
are IoT, BigData and Blockchain but especially AI.

The basic concepts of AI were proposed in the middle of the last 
century. In 1943, Warren S. McCulloch and Walter Pitts designed the first 
computational neural model (Chakraverty et al., 2019). In 1952, Marvin Minsky 
built the Stochastic Neural Analog Reinforcement Calculator, one of the first 
implementations of neural networks, which was based on vacuum tubes. Since 
then, the history of AI has been a roller coaster ride, with several winters but 
also with golden ages, being the actual moment may be the definite one (Toosi 
et al., 2021). In order to explain the renewed prominence of AI, multiple factors 
can be mentioned:

 • The advances in hardware systems and the consequent increase in 
processing power enable complex models and algorithms to be designed 
and implemented in reasonable times;

 • The definite maturity and adoption of IoT, cloud computing or big data. 
They are basic technologies that make it possible to collect, aggregate 
and process huge amounts of data, which are needed for training; and

 • Finally, it is also important to emphasize the release of tools that abstract 
the complexity of the underlying mathematical concepts.

At least, the following main areas can be identified within the AI realm (Claire, 
no date):

 • ML comprises tools and techniques that allow systems to learn from 
data (Zhou, 2021). Supervised and unsupervised learning can be used 
depending on whether data is labelled or not (Alloghani et al., 2020). 
The most common forms of implementation are neural networks, deep 
learning (DL) and generative adversarial networks. Lately, systems based 
on reinforcement learning are gaining importance. They are based on 
algorithms that learn how to achieve a certain objective through positive 
or negative incentives defined by the designer (Wiering and Van Otterlo, 
2012).

 • Knowledge representation and reasoning is a field that focuses on how to 
represent information so that a system can solve complex tasks. It covers 
aspects such as semantic networks, ontologies and knowledge graphs to 
represent information (Duan et al., 2019), metamodels, fuzzy logic that 
allows working with uncertainty (Mittal et al., 2020), first-order logic etc.

 • Search paradigms try to solve problems in which, starting from an initial 
state, a certain objective must be reached and to do so a sequence of 
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actions must be executed (Korf, 1999). Optimisation techniques are used 
when, in addition to finding the right sequence of actions, costs must be 
reduced (Mirjalili and Dong, 2020). The simplest examples are algorithms 
such as Depth-First Search.

 • Planning enters those larger scenarios where a blind or even informed 
search is inefficient. In this context, planning algorithms differ in the amount 
of information they handle when deciding. Some relevant techniques are 
Stanford Research Institute Problem Solver framework (Lifschitz, 1987), 
planning graphs, heuristic search planners (Bonet and Geffner, 2001), 
inductive logic programming (Riguzzi, 2022) or decision networks.

 • Multi-agent systems include concepts such as self-organisation or self-
direction and multi-agent learning (Wood and DeLoach, 2000). Multi-
agent systems could be framed within a larger field and distributed AI 
(Peteiro-Barral and Guijarro-Berdiñas, 2013), in which there is also an 
interesting topic such as swarm computing.

 • Natural Language Processing (NLP) is with areas such as machine 
translation or translation from one language to another, understanding or 
generation of natural language (Chowdhary, 2020).

 • Robotics (Craig, 2005) is where many of these techniques are applied but 
where we have to take into account additional factors such as physical 
safety issues (Haddadin, 2015), human-machine or machine–machine 
interaction (Yang et al., 2021), mechatronic systems (Merzouki et al., 2013), 
real-time requirements or physical intelligence.

 • Computer vision (CV) is including aspects of recognition, identification, 
detection, motion analysis, scenario and image reconstruction (Forsyth 
and Ponce, 2011).

During the last years, ML and DL have attracted a lot of attention not only 
from research groups and companies but also from a more general audience 
(Sejnowski, 2018). In many cases, to train the models, huge datasets must be 
used during very long processes that consume a lot of powerful and specialised 
computation resources (e.g. graphics processing units, tensor processing 
units or even supercomputers). Thus, the catalogue of services of the main 
cloud providers following Infrastructure as a Service (IaaS) or Platform as a 
Service (PaaS) paradigms includes offerings targeting the specific needs of ML 
processes (Google Cloud, no date) (AWS, no date), (Azure, no date). Software 
as a Service (SaaS) is also starting to emerge with off-the-shelf components and 
models for NLP, CV or to boost the training (Hugging Face, no date).

During the industrialisation process of AI and ML technologies, it is essential 
to guarantee robustness, reliability and accuracy during the complete life cycle. 
Potential problems may have a strong and negative impact on the performance 
of the models and the applications or services integrating them. If the models 
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are deployed in a production environment, it is possible that their performance 
may decline significantly when the input data differs slightly from the training 
dataset. This difference in data distribution between the training and production 
scenarios is referred to as ‘domain shift’ and is a commonly encountered issue 
in ML (Quinonero-Candela et al., 2008). Unsupervised domain adaptation 
techniques address the problem of domain shift by transferring knowledge 
learned from source domains, which have a large number of annotated training 
examples to target domains that only have unlabelled data. After deployment 
in production, domain drift may occur multiple times. If these changes are 
detected, it may be necessary to initiate a new adaptation process. There is 
also a need for the development and expansion of methods and tools that can 
monitor the error analysis of neural networks in situ and assess the robustness of 
neural networks to detect any shift or regression. Machine learning operations 
(MLOps) is a new paradigm that aims to introduce best practices to deliver 
efficient, repeatable and reliable end-to-end ML workflows (Alla and Adari, 
2021). Tools like Kubeflow (Kubeflow, no date) or MLFlow (MLFlow, no date) are 
becoming more and more popular in this area.

5.2  Edge computing and distributed artificial Intelligence

While cloud-centric AI solutions are completely dominant in the consumers’ 
applications market (e.g. personal assistants, recommendation systems), 
industrial or enterprise clients provide a much bigger opportunity, being the 
agriculture domain one of its clearest exponents. Nevertheless, some barriers 
must be overcome to achieve the adoption and success of AI:

 • Protect data security and privacy since the information may be confidential;
 • Satisfy real-time requirements for decision-making and control;
 • Provide high accuracy and adaption to evolving data distributions and 

contexts; and
 • Guarantee cost-effectiveness and scalability in scenarios with a massive 

amount of data sources.

In many cases, AI systems relying on cloud platforms are not able to comply 
with these requirements due to the need to centralise the information on a 
single location for the training process and the limitations of the communication 
protocols and network technologies during the inference phase. To mitigate 
these problems, edge computing offers important advantages by exploiting 
the increasingly powerful computing capabilities of resources like IoT devices, 
gateways, robots, customers’ infrastructures, regional data centres, etc. 
(Bierzynski et al., 2021). At the software level, approaches like Tiny Machine 
Learning or lightweight neural network architectures enable AI to be executed 
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over more limited edge computing resources (Ray, 2021). There are also available 
approaches that leverage the distributed nature of edge-based systems, being 
Federated Learning (FL) one of the most well-known (Yang et al., 2021). Using 
FL, each edge device trains its own version of the model without sharing the 
raw information with other devices or with a cloud platform. Then, all the partial 
and local models are combined by a central node resulting in a global model 
that is distributed to the edge devices for inference. Thus, edge computing 
offers important advantages for distributed intelligence enhancing both the 
concept of multi-agent systems and shared computational load. Distributed 
Artificial Intelligence or Decentralised Artificial Intelligence (DAI) aims to 
leverage independent and autonomous computational resources to learn, plan 
or make decisions (Huhns, 2012). The availability of multiple resources enables 
the speed-up of processes through paradigms like Parallel Programming or 
Distributed Training (Verbraeken et al., 2020). Multi-agent systems (MAS) have 
emerged also as a technology to solve problems that cannot be addressed 
properly by a single individual agent, having vast applicability in the control 
of robotics systems (Van der Hoek and Wooldridge, 2008). Multi-agent deep 
reinforcement learning (MARL) is being recently been proposed to implement 
scalable solutions in environments with partial knowledge or a high level of 
uncertainty (Oroojlooy and Hajinezhad, 2022).

5.3  Smart agriculture solutions and applications

A great diversity of services can be implemented powered by digitalisation 
and AI, contributing to addressing some of the challenges that currently limit 
the sustainability of food systems. Relevant examples and opportunities are 
being explored in farming, post-harvest operations, processing, logistics and 
consumer support, covering the complete farm-to-fork value chain (Marvin 
et al., 2022). The interplay with aerial and ground robots is also vast: on one 
hand, they require different types of ML models and AI algorithms for object 
recognition, people detection, localisation, navigation, decision-making and 
actuation. One example is the work released by Facebook Research with DETIC 
(Zhou et al., 2022), a detector that is able to identify more than 20 000 classes 
off-the-shelf and that can be used to analyse or process images and video 
streams for different tasks in which robots are involved. On the other hand, 
robotics systems collect high-quality and heterogeneous information from 
crops thanks to onboard cameras and sensors that can feed the different phases 
of MLOps pipelines. In precision agriculture applications, images captured by 
drones can be combined with satellite information to assess the crops’ growth 
and health through the calculation of relevant indexes like NDVI (Normalised 
Difference Vegetation Index) (Harsh et al., 2021). Drones and ground robots 
with onboard cameras can be used to detect in real-time the early presence of 
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pests and diseases, applying appropriate treatments with high accuracy, which 
leads to important savings in terms of costs and environmental pollution (Iost 
Filho et al., 2020). They can also perform a high number of actuations (e.g. soil 
sampling, weeding, harvesting) in an automatised way, improving the labour 
conditions of farmers and the sustainability of their businesses (Krishnan  
et al., 2020).

6  Mission control platforms

6.1  Need for mission control

Robotic systems and autonomous vehicles have become powerful instruments 
that complement and extend the capabilities of traditional agricultural 
machinery. They incorporate a variety of onboard sensors and cameras to obtain 
high-quality information and to perceive the environment. The integration 
of advanced embedded systems and connectivity, as explained in previous 
sections, allows processing in real-time collected data to apply AI techniques in 
order to make decisions or to offload part of the heavier algorithms to systems 
running on cloud platforms. The resulting decisions require controlling different 
systems (e.g. navigation and actuation) or even interacting with human actors 
or other devices. In the specific case of agricultural applications, an additional 
challenge is a need to work in highly dynamic and unstructured environments, 
characterised by the uncontrolled presence of people, vehicles, machinery or 
cattle. Even MRS, consisting of different robots with different capabilities need 
to be introduced to address the complexity and performance requirements (Ju 
et al., 2022).

The complexity of robotics missions can differ depending on the level 
of autonomy allowed to the robots and the possibility to dynamically update 
the plans according to their evolution and to the changes in the context. For 
instance, in the case of highly autonomous and automated robots, a mission 
can be seen as a sequence of locations to be visited and a set of actions to 
be performed, satisfying some high-level goals and constraints, e.g. mission 
duration and fuel consumption. In the case of simpler robots, the mission control 
must be closer to the actual robot control system that includes instructions on 
what is expected from various parts of the robots (ROS, no date; ROS2, no 
date). MRS can be divided into fleets of homogeneous robots, typically called 
robot swarms and fleets of heterogeneous robots. Robot swarm mission control 
typically involves spatial task allocation, formation control and task execution. 
Scenarios with fleets of multiple heterogeneous robots require an additional 
level of intelligence in the planning to determine which is part of the mission 
that must be assigned to each vehicle and how to orchestrate them (Wheare, 
2018; Dumka et al., 2018, Rizk et al., 2019).
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Mission Control is a high-level user interface for a robot. Mission Control 
Platforms are used to visualise the data coming from the robot as well as to 
give new instructions to the robot (Plura et al., 2011). Usually, the instructions 
are at a high level, i.e. to start or to stop operation, to change the task or to 
move to a certain point. A robot may have its own dedicated user interface, 
but a mission control platform is more general software that can be used to 
command multiple different robots. They can be seen as a very simple way 
to plan and manage the execution of the mission, relying mostly on human 
operator skills and knowledge.

In the following sections, we give state-of-the-art examples of agriculture 
ground robot control systems and open-source drone platforms that are being 
developed to be applicable to robot and drone fleets.

6.2  Mission control by ISOBUS and extended farm 
management information systems data interface

The development of the robot tractors started several decades ago (Rondelli 
et .al ., 2022). Today, there are even commercial robot tractor applications 
available. However, the robot tractors are rarely in use on farms. The reason may 
be that the current robot control systems do not integrate well to existing farm 
ICT systems. Usually, those are vendor-specific closed systems. In agricultural 
technology, it has already been recognised that the standardisation is the key 
to the widespread adoption of technology. The ISO 11783 standard, market 
name ISOBUS, is widely accepted communication standard for agricultural 
machinery. The standard defines many devices that can be used in precision 
farming. By using the standard, the devices and the implements of different 
manufacturers are compatible with each other.

ISOBUS Task Controller (TC) is a standardised device that is used to 
document and control the precision farming operations on the field. It is based 
on the ISO 11783-10 standard (ISO 11783-10:2015). The data is transferred to 
the ISOBUS TC using the ISOBUS Task files. Despite the original purpose of 
the ISOBUS Task file, it can be also used to describe the robot’s work on the 
field (Backman et al., 2022). The driving lines, implement allocations, timing 
of operations, description of operation etc. can be described in the Task file 
in a standardised way. Practically, all the information the robot needs can be 
included in it.

The Task files are designed in the FMIS software. Today, FMIS software is 
increasingly running in the cloud service, or the cloud service is part of the 
operation of the software. For this reason, many manufacturers have made their 
own solutions for transferring data to the ISOBUS TC from the cloud. There 
are also broker services that allow transferring of ISOBUS Task files to TCs 
from multiple vendors (DKE-Data GmbH & Co. KG, no date). However, these 
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are not standards, so universal compatibility with products from all different 
manufacturers is not guaranteed. The universal compatibility is what the 
ISOBUS systems are wanted to be.

The AEF recognised the problem of incompatibility between different 
ISOBUS products and in 2017 set up a working group to develop vendor-
independent data transfer between FMIS software and the TC. The data 
transfer method was named Extended FMIS Data Interface (EFDI). The AEF has 
published a guideline on the definition of EFDI (AEF, 2020b) and the process of 
ISO standardisation is ongoing (ISO/DIS 5231, 2022).

In the EFDI’s development work, AEF did not develop a protocol from 
scratch. AEF’s EFDI working group has selected appropriate existing protocols 
already in use on the internet and built functionality on top of them. Before 
the selection, the working group explored the different options and their 
pros and cons. The data transfer was required to be reliable and scalable to 
systems of different sizes, and it needed to work even with a slower network 
connection. Naturally, it was desired to be compatible with the definition of 
the existing ISOBUS Task file (ISO 11783-10:2015). As a result of the study, the 
Protobuf (Google, 2022) originally developed by Google was chosen as the 
data transfer format. The conversion from XML file to Protobuf format and back 
is straightforward. EFDI also defines more metadata than the original XML file, 
describing, for example, what should be done with the transferred Task file. The 
MQTT (Message Queuing Telemetry Transport, ISO/IEC 20922, 2016), which is 
commonly used in various IoT systems, was chosen as the data transmission. In 
addition to these, the HTTP protocol (IETF Trust, 2007) was chosen to log in to 
the system.

Using the EFDI communication, the instructions to the robot can be sent in 
a standardised way. The operations can be started or stopped, or the operations 
can be scheduled to be started at a desired time. The execution of the operation 
can also be monitored through the telemetry protocol that is included in the 
EFDI communication. The communication channel is also extensible, and it 
supports sending and receiving arbitrary binary files. In other words, EFDI is a 
suitable standardised communication channel between the robot and mission 
control system similar between the robot and FMIS. On the other hand, FMIS 
systems seem to be developing in the direction of Smart Farm Management 
Systems (FIWARE, 2018), capable of also managing Mission Control Systems.

6.3  QGroundControl drone control system

Drones are becoming important farm machines due to their advanced easiness 
of use and models that are affordable also for smallholders (Puri et al., 2017). 
Autopilot systems are important techniques in view of user-friendliness and 
safe use. Drones equipped with an autopilot are robots, which require a mission 
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control system (Kangunde et al., 2021). QGroundControl (QGroundControl, no 
date) is a powerful open-source software for flight control and vehicle setup 
(Drone Foundation, no date). It allows mission planning for autonomous 
vehicles and a full configuration of PX4 vehicles or any autopilot using the 
MAVLink (Micro Air Vehicle Link) protocol.

PX4 is an open-source autopilot for controlling different vehicle types, 
including aircraft, ground vehicles and underwater vehicles (PX4 Autopilot, no 
date, a). It is a core part of a drone platform, along with the QGroundControl 
station and other hardware components, which communicate via MAVLink 
protocol. MAVLink is a lightweight messaging protocol for communicating with 
drones and between them (comparable with EFDI protocol). It follows a hybrid 
publish-subscribe and point-to-point design pattern where data streams are 
published as topics while configuration subprotocols are point-to-point with 
retransmission (MAVLink, no date).

QGroundControl is a multi-platform software, it runs on Windows, OS X, 
Linux platforms, iOS and Android devices. It provides 2D and 3D aerial maps 
where the user can build the mission, and which allows visualizing the location 
where the vehicle is during its mission. One of the most interesting features of 
this software is the telemetric information of the vehicle and multiple sensors 
that the user can view during the execution of the mission. Another key aspect 
of QGroundControl is the logging system, which allows downloading of binary 
log files from vehicles and sensors to check the status and assess specific 
information.

QGroundControl software provides an internal MAVLink Console to run 
commands and a MAVLink Inspector, where the user can inspect real-time 
messages of multiple parameters and create plots from this information. PX4 
supports simulations on computers (SITL) and simulations using simulation 
firmware on a real flight controller board (HITL). Gazebo (Gazebo, no date) is 
one of the supported simulators for PX4, it provides a powerful 3D environment 
for testing object avoidance and computer vision (PX4 Autopilot, no date, b). It 
can be used with both simulation methods, Software in The Loop and Hardware 
in The Loop (Nguyen and Nguyen 2019; Hentati et al., 2018).

7  Service framework

Farms utilize increasingly digital technologies to run their farming operations and 
businesses. Data-driven farm management enables farms to create resource-
efficient production as well as to connect digitally with other businesses and thus 
be part of the evolving data economy. Each farm is unique due to its location, 
ecological environment, size, production line, machinery, skills, business 
opportunities and history. Thus, the optimal set of farm technology varies from 
farm to farm. Typically, the machinery, equipment and management systems of 
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a farm consist of several brands. Farms that are digitalising operations and farm 
management have faced problems with connectivity and data sharing between 
the available digital systems.

Farm, as well as machine management, in the field needs several data 
sources to run efficiently (Sorensen et al., 2010, Fountas et al., 2015). Cloud 
platforms were presented as a generic solution for the data integration problem 
in the 2000s and also in agriculture (Kaloxylos et al., 2012). The FMIS as a 
cloud platform was introduced. The FMIS platform provides the API through 
which diverse other services, applications, data sources and storages can be 
integrated into one farm management system. In addition to APIs, an FMIS 
platform includes data storage and analytics layers for decision support and 
user interface for the end user. The concept gives the farmer a value proposition 
that he/she and his/her robot systems can get access to all needed digital tools 
through the familiar FMIS.

The concept has been found challenging from the business point of view 
when the number of digital solutions that farms could choose from is increasing. 
In practice, FMIS providers cannot collaborate with all available applications or 
data providers that the farmers would wish to use. Therefore, Kaloxylos et al. 
(2012) proposed the concept of Farm Management System (FMS) which is a 
kind of application framework including one or more FMISs and other additional 
services for farmers. The FMS could be provided as a package service offered 
by another provider. Digesting an additional data source or application to FMIS 
service provision needs effort and business motivation. Thus, it was stated by 
Pesonen et al. (2014) that instead of gathering farm’s digital tools into a single 
cloud platform the technology should be provided as an interlinked system 
of systems from which the farmers could choose the needed services and 
applications and utilize them through a kind of a Service Framework.

The concept of a Service Framework becomes even more important in 
the context of field robots. Robots require all information in digital format to 
function fluently and autonomously. This increases the number of data sources 
and analytics services that robots must be connected to when compared to 
manned machinery. Robots need to be connected to FMIS (i.e. using EFDI) 
to perform the field tasks but also to other machines in the area or linked to 
the task in hand. The robot also needs to connect to the services providing 
information about the environment like topography, obstacles, weather, soil 
and plant condition, roads, traffic, storage etc.

When looking at the needed management system from a robot 
entrepreneur’s point of view, who provides RaaS services to several farms, the 
currently available information management systems are not adequate. The 
Service Framework for RaaS management is also needed. The Smart Farming 
Management System concept introduced by FIWARE (FIWARE, 2018) describes 
comprehensively the needed FMS elements and their connections. The concept 
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could be implemented as loosely coupled independent element clusters from 
different or selectable providers if data connections were easy to create and 
data management rights and obligations were clear to all parties. The concept 
of data space with the idea of data sovereignty provides interesting views for 
technical solutions (Section 8). Figure 4 illustrates how current provider-based 
service frameworks, i.e. created around IoT, FMIS or RMIS platforms could 
change to user-centric decentralised service frameworks, where users can take 
in only those services that fit their needs and services would be connected. The 
user of this kind of user-centric service framework could be a farmer as well as 
a RaaS entrepreneur.

8  Data spaces serving robots

8.1  Data spaces

Agricultural robots are intelligent autonomous devices that both create and 
consume data. Their role is changing from simple tasks to more complex 
operations that involve interaction with AI, analytic tasks and even with another 
robot. Robots are becoming parts of networks that exchange data. They deal 
with data that is critical to the farmer and valuable to the other actors in the 
food system. The data is an asset to the data owner, and it is worth the effort to 
invest in its ownership and governance.

Data space is defined as a decentralised infrastructure for trustworthy 
data sharing and exchange in data ecosystems based on commonly agreed 

Figure 4 Illustration of a foreseen shift from provider-based service frameworks to user-
centric decentralised service frameworks enabled by data space infrastructures and data 
sovereignty.



 Advances in connectivity and distributed intelligence22

Published by Burleigh Dodds Science Publishing Limited, 2023.

principles (Nagel and Lycklama, 2021). Data spaces infrastructure tries to create 
an environment and tools where different companies and entities can share 
and exchange their data assets without losing control over their data. The aim 
is to enable both the data economy, where data is considered an asset that 
is traded as any real-world asset and distributed systems of systems, where 
data is exchanged automatically between complex digital systems (Curry et al., 
2022). The first part relates to buying and selling data assets through data 
marketplaces (Huang et al., 2021). The main drivers are big data analytics and 
AI that needs large, high-quality data sets for ML with a level playing field for the 
participants. The second part is the implementation of cyber-physical systems 
(Liu et al., 2017) or industry 4.0 concepts (Alcácer and Cruz-Machado, 2019), 
where physically distributed systems create a single value creation network or 
complex control or management systems. The data space can even be seen 
as a distributed alternative to a service framework (Fig. 4). Examples vary from 
complex logistics chains to smart factories, smart city and smart farming and 
food production type of systems. The common feature in all of these is that the 
complete operation requires data from multiple data owners whose ownership 
must be respected.

8.2  Road towards data spaces

Even though the data spaces are meant for exchanging data between ICT 
systems running in cloud platforms, their roots are in the networking of systems, 
in the smartness of collaborative systems, and in the creation of trust between 
partners. Communication and networking have undergone a transition from 
networking computers to things and data. This has led to concepts such as IoT 
and semantic web or Linked Data. IoT has its roots in M2M communications 
that were extended with digital representations of physical things, which 
have further evolved into Digital Twins that are models representing physical 
components and systems (Vermesan and Friess, 2013). The Web of Things 
turned physical things into digital services providing a more software-oriented 
approach to real-world interaction. In IoT the main trend has been to develop 
IoT platforms that collect data and provide integrated and advanced services 
to process and visualise the data. This has led to the business model of having 
IoT PaaS, where data are valuable assets that has further led to the data silos 
and platform lock-ins making data sharing and use more challenging due to 
business protection reasons.

Networking based on data was started by hypertext and world-wide-
web back in 1990s. The next step was to make data machine readable so 
that data processing could be automated. This and the open data concept-
enabled web-based applications and services. The Semantic Web concept is 
that data elements themselves are linked with each other, and these linkages 
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are embedded into the data. This opened the way to real data networking 
that means accessing data through its links to other data. Currently related 
technologies such as XML (extensible markup language), OWL (Web Ontology 
Language), RDF (Resource Description Framework), SPARQL (Simple Protocol 
and RDF Query Language) and JSON-LD (JavaScript Object Notation for Linked 
Data) are widely used in most of the ICT systems (Semantic Web, no data).

Automatic and autonomous devices and robots have been present in 
visions for ages. Advances in AI,ML and big data analytics have started to 
make them a reality. Object identification, data fusion and context modelling 
have been solutions that have enabled systems from autonomous driving 
and complex cyber-physical systems. Technology is also taking steps towards 
intelligent fleets of robots or smart places that involve sharing of situational 
awareness between systems. The data space concept provides means to 
combine these advanced technologies that need advanced competencies 
both in development and maintenance into complete systems.

Trust is a critical aspect in the data spaces (TRUSTS, no date). A specific 
characteristic of the data asset is that it can be easily copied and distributed 
making the ownership hard to supervise. The creation of trust needs both 
technical means to share and control the data and its use, and a legal framework 
that provides policies, rules and regulations for being part of the ecosystem and 
creating consequences in case of misbehaving. Technical means have focused 
on interoperability and encryption, while legal frameworks have been based 
on identity management and smart contracts. Bitcoin and blockchains initiated 
the development of distributed ledger technology (DLT) that has proven to be 
a powerful tool for developing transparent and trustworthy systems (Backman 
et al., 2017; Hummel et al., 2021).

8.3  Recent developments enabling data spaces

During the last decades, we have seen the rise of platforms that have made the 
owners very powerful and dominant. The security of solutions and reliability 
of platform providers has raised concerns that have limited digitalisation. 
Companies have become concerned about their ownership and control of 
the data. The wishes for more restricted and trustworthy internet and data 
infrastructure are now recognised as a necessity. Data spaces as described 
in EU Data Strategy are seen as an alternative to creating an environment for 
a data economy with more fairness and equality for the players (Anon, 2020; 
Anon, 2022).

The International Data Spaces Association (IDSA) was initially an industrial 
data-sharing initiative with a target to create a Linked Data solution that could 
be used by companies in sharing their confidential data. It was renamed 
changed as a data space initiative in 2017 and a reference architecture for data 
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spaces was created (Otto et al., no date). The main idea of the IDSA architecture 
is that all users’ identities are validated and that all the activities through the 
data space occur via open source and transparent components that have been 
accepted by IDSA. The data sharing includes smart contracts between partners, 
where usage policies are agreed. The data transfers take place through IDSA 
Connectors and point-to-point communication. All the traffic is encrypted using 
X.509 certificates. The data is not transferred to any centralised storage and 
the data owner has full control over its data. The IDSA architecture defines a 
component called Metadata Broker for publishing the metadata for the data 
each partner is making available in the data space. The Broker allows the data 
users to search available and published data assets but accessing to data must 
be agreed upon with the data owner.

 • GAIA-X is another example of a data space and started as a German–French 
initiative in 2019, but it has expanded to a global initiative. The aim was to 
create a federation layer between the physical cloud infrastructures and 
the use of data (Gaia-X Architecture Document 21.12 Release, no date). The 
main idea of GAIA-X was to expose the physical infrastructure properties 
to the users so that users would know in detail where and by whom their 
data is stored or processed. In some cases, the trade secrets or legislation 
requires that data must be kept within some specific country, for example. 
GAIA-X also involves sovereignty preserving data sharing and it also tries 
to collect companies to set up data spaces in several domains. GAIA-X 
aims at an open-source, transparent and decentralised implementation. 
The aim is to create a decentralised autonomous organisation (DAO), 
where all the operations are defined as software.

Yet another example is the Ocean Protocol which is a crypto ecosystem using 
the Ethereum blockchain for sharing data. Data tokens are used for sharing 
URLs of data assets, access control to data services and for different access 
and usage policies. The network is implemented as a DAO (Ocean Protocol, 
no date).

iSHARE and i4Trust are examples of an approach where data spaces 
are built from a trust perspective. The aim of these is to create a trustworthy 
environment through a federated legal framework with verifiable identities and 
agreements. The data exchange takes place through common APIs (iSHARE, 
no date).

Using the data space concept in data economy or distributed and 
collaborative systems requires data interoperability and common operating 
principles. The scope of interoperability can vary from a single use case 
to a single global data space or to a single digital market as in the EU. The 
baseline for interoperability is the work that has been done in semantic data 
modelling and smart contracts, but various initiatives to create for example 
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domain-specific solutions have been proposed. For example, in GAIA-X several 
domain working groups have been established to create common rules and 
policies (Tardieu, 2021). The EU has also done significant investments in setting 
up the data spaces in its Digital Europe programme (Anon, 2021). The purpose 
of these initiatives is not to create new solutions but to agree together on 
practical issues that are needed in creating collaboration.

8.4  Data spaces and robots for agriculture tasks

Data spaces are a key enabler for implementing robotic systems in complex 
and fragmented farming environments meaningfully. Complexity implies 
that the constellation of utilised tools, e.g. IoT solutions, robot platforms and 
communication channels, must be tailored individually for each farm operation, 
varying from farm to farm. The chosen technologies must be able to establish 
data connections between each other and also to other farm services when 
operating at different levels of farm management, i.e. farm tasks, fleet tasks, 
robot tasks and detailed robot tasks. Data spaces with evolving standardisation 
pave the way for such agile utilisation of digital solutions and data in a secure 
and trusted manner. The data sovereignty of both farmer and service providers 
(i.e. RaaS provider) enabled by common data intermediary services, consent 
management functionalities, service catalogues, metadata operators and user’s 
service framework application make the planning and control of complicated 
MRS possible in an agile and user-friendly way. While data spaces can be seen 
as a distributed service framework, users like farmers and RaaS entrepreneurs 
can define their individual Service Framework capturing all services they need 
for their activities.

9  Case study: FlexiGroBots concept

As a practical example of advanced connectivity and the use of distributed 
intelligence in agriculture, a use case based on the research project FlexiGroBots 
is introduced. The use case focuses on oil seed pest management (Kaivosoja 
et al., 2022).

Efficient oil seed pest management can be challenging. Invasive insect 
pests can destroy the whole yield, and yet, the reduction of applied pesticides 
is encouraged. The use case studies modern possibilities for implementing 
drones and robotics for pest invasion scouting and for precision pesticide 
spraying against pollen beetles in rapeseed fields. In this case, a drone is first 
scouting over the rapeseed field to spot individual pollen beetles in traps and 
taking images for analysis of the level of invasion: how many pollen beetles per 
trap and in which parts of the field. The drone is operated using QGroundControl 
for autonomous mission planning and control. The communication uses 
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MAVLink protocol. The QGroundControl to receive spatial data of field maps 
and locations of traps from FMIS.

The images taken by drone camera are sent to an IoT cloud platform and 
from there further to FlexiGrobots platform for AI-assisted analysis where ML 
techniques are utilised to automize pollen beetle identification and counting. 
The AI solutions in the platform are trained by exploiting local reference data 
from the trap images, available from the drone-camera system’s IoT platform 
collected to the IoT platform. After processing, the results are sent back to 
FMIS where they are translated into a spraying task. The spraying task can be 
performed by a spraying drone, small field robots, a tractor-sprayer or with 
different combinations of these platforms. When different types of robotic 
platforms can utilize similar task applications, the platform selection can be 
done just before the actual spraying. A spraying drone can spray hotspots 
rapidly without trampling the rapeseed while the tractor-sprayer can spray the 
entire field sufficiently.

The field operation by spraying drones follows the same task planning and 
mission control as in the case of scouting drone operation. When spraying takes 
place by a small field (ground) robot or tractor-sprayer the mission control center 
communicates with them and FMIS utilising the EFDI data transfer method with 
Protobuf format and MQTT data transmission. The service framework enables 
different service providers to join the use case. Such services can be an FMIS, 
IoT trap service, drone scouting service, service for machine vision or image 
classification, service for application task generation and spraying services. 
The data connections between participating services are arranged using data 
space infrastructure that follows IDS reference architecture.

10  Conclusion

Farms are demanding worksite environments for autonomous machines. The 
most demanding cases in agriculture where the communication and smartness 
of the robotic systems are challenged can be found in the context of open 
fields of arable farming, when MRS execute farm tasks fluently and safely. Along 
with the Industry 4.0 era, robots are increasingly part of connected machinery 
or service systems also in agricultural production environments. Robots need 
to be able to function in meaningful ways and integrate into diverse production 
chains and operate efficiently and safely in demanding conditions, especially 
when robots are exploited as a service (RaaS).

The concept of the IoRT defines connected robots as IoT systems which 
exploit cloud services to increase calculation, data storage and analytics 
capacities, i.e. Big Data analytics and ML. When applying the IoRT concept 
in agriculture, the internet is the most important communication network of 
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robots. The main challenges related to the Internet are the unpredictable delays 
of the network and the ‘last mile connection’ that needs to be wireless when 
agricultural robots perform their actions in fields. For communication between 
vehicles and other entities, V2X communication technologies have been 
developed. The original V2X technologies were based on WLAN technologies, 
but the more recent development C-V2X uses cellular technologies and is 
expected to use also 5G networks.

In the case of agricultural robots, IoT has two roles: (1) it can provide data 
for the robot and (2) the robot itself can be considered as a thing connected to 
the Internet. In the future, IoT provides means to share data in physical world in 
the cyber world, enabling analysis and optimisation of large-scale systems of 
systems. It also provides means to create advanced situational awareness about 
the state of relevant aspects affecting the decision-making, i.e. weather, pest 
invasion, progress of other units’ working processes and physical interaction 
in local contexts. Currently, IoT feeds the digital twins with real-world data, but 
the trend is in expanding the use of digital twins towards the exploration of 
alternative futures that can be a basis for better decisions today.

The data deluge captured by the heterogeneous digital systems that are 
currently supporting the different processes that are part of food production 
systems can be exploited through the application of AI techniques to create 
intelligent applications. ML models can be trained, deployed and productised 
following MLOps practices and recommendations that guarantee compliance 
with ethical and trust requirements. The convergence of AI techniques with 
the powerful capabilities of the new generation of edge computing devices 
facilitates addressing some of the most relevant challenges in terms of privacy 
preservation, scalability and real-time control which has traditionally limited the 
introduction of AI in the agriculture domain.

Mission Control is a high-level user interface for a robot. Mission Control 
Platforms are used to visualise the data coming from the robot as well as to 
give new instructions to the robot. Agriculture has a dedicated state-of-the-art 
communication protocol for ground vehicle mission control called EFDI as part 
of the ISOBUS standard. For drones, the QGroundControl drone control system 
with the MAVLink protocol has the same role.

A data space is defined as a decentralised infrastructure for trustworthy 
data sharing and exchange in data ecosystems based on commonly agreed 
principles. Data spaces infrastructure tries to create an environment and 
tools where different companies can share and exchange their data assets 
without losing their control over their data. Data spaces are a key enabler 
for implementing robotic systems in complex and fragmented farming 
environments meaningfully. Complexity implies that the constellation of utilised 
tools, e.g. IoT solutions, robot platforms and communication channels, must 
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be able to tailor individually per farm operation, varying from farm to farm. 
While data spaces can be seen as a distributed service framework, users like 
farmers and RaaS entrepreneurs can define their individual Service Framework 
capturing all services they need for their activities.

11  Future trends in research

In agricultural robotics, the future will bring in robots that can do more complex 
and sensitive tasks. The capabilities developed for industrial robots will be 
brought to agricultural tasks and the capabilities developed for autonomous 
vehicles will make the field robots more maneuverable. The development of 
battery technologies and the need to get rid of CO2 emissions will pave the way 
to electrification. This will lead to smaller robots and the need for collaborative 
robotics will increase (Lytridis et al., 2021). Robots will need capabilities to 
interact and make joint decisions more efficiently (Oliveira et al., 2021). The 
role and research needs of shared situational awareness of relevant information 
needed for decision-making among collaborating systems and humans and 
distributed decision-making will increase. Edge computing and real-time 
analysis will produce results in more and more real time, while AI and new 
analysing methods will offer reliability to systems. The developing connectivity 
makes it possible for the robots to be more purely only sensors and actuators, 
the computation and intelligence being separated and outsourced as edge 
or cloud service. This is an interesting future research topic since outsourcing 
can result in more precise and intelligent robot operations when several 
external data sources and services are connected in outsourced service to 
provide dedicated operational functionalities. This will also have an impact on 
the farming process by enabling the efficient execution of complex farming 
operations like mixed cropping. Also, user-centric decentralised service 
frameworks enabled by data space infrastructures provide new ground for 
ever-smarted robotic systems research.

The dependency of GNSSs on agricultural robotics and drones is critical. 
Methodologies for optional navigation systems such as local wireless networks 
and image recognition and analysis will also be future research topics in 
connectivity.

The research on synthetic data for training AI, especially ML systems, is 
topical for further research. Nowadays data is used increasingly to build Digital 
Twins also in agriculture. This opens possibilities to develop these virtual 
environments into synthetic simulation environments by utilising synthetic 
datasets in the environment (parallel to real-world data). These environments 
provide interactive simulation environments for training ML agents, i.e. 
reinforced learning agents (Nikolenko, 2021). Simulation carried out using 
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Digital Twins will also take a role in constructing reference data and providing 
synthetic data for measurement development (Kaivosoja, 2022).

As the degree of automation increases in agriculture, the challenge of 
how to make robots cost-efficient and user-friendlier will change the current 
practices. The possible scenario is to move towards a service model, where 
robots and robot fleets are owned and operated by service companies instead 
of farmers (Agam, 2022). This sets requirements for robots to adapt to different 
types of digital environments and systems, which requires research on new self-
learning and cognitive capabilities of robots. User-friendliness requires higher 
abstraction-level user interfaces, where operators do not need to understand 
the details of how the robots operate. However, to enhance the operator’s and 
end-user’s trust in AI, research on explainable AI (XAI) development increasingly 
is important. XAI aims to explain transparently how AI performs the decision-
making processes (Ryo, 2022).

The future of agricultural robotics will be based on the development of 
the technologies described in this chapter. Connectivity, AI and data will 
play a key role in developing robot systems to serve farms individually and 
feasibly and to assist them to comply with the requirements of food value 
chains, i.e. sustainability, green transitions, farm-to-fork communication and 
circular design. Sustainable intensification of food production requires that 
agricultural actors are better aware of production-related possibilities and 
constraints (environmental, biological, legal, ethical, economic and technical) 
in several levels of decision-making and information detail than today and are 
able to exploit the potential. On the other hand, sustainability, ethical aspects, 
increasing population, productivity requirements and novel production 
methods like vertical farming are all issues that change the ways robotics will 
be applied. While intensifying, production environments must foster the well-
being of humans and animals. To be able to cope with all requirements, AI 
assistance will be embedded widely in everyday farming tools and services 
having diverse levels of autonomy (Duckett et al., 2018). As stated by Asseng 
and Asche (2019), we have the components needed to build future farms 
based on robots, but we need to combine the elements to fully utilize the 
potential. A more holistic approach than today is needed for the digitalisation 
of the production at farms, capturing all farming processes, as signposted by 
‘Hands-Free Hectare’ and ‘Hand-Free Farm’ projects (Hands-Free Farm, no 
date). For example, it is needed to extend the current MRS control approaches 
to farm or crop mission management that covers all the phases of the crops 
including monitoring, analysis and various actions that are needed during 
growth periods. Such solutions could provide means to collect and combine 
the crop-related data for later phases of food production. The holistic and farm-
specific approach would help to define meaningful division of roles between 
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machines and humans while respecting farmers’ individual preferences but 
exploiting still data-based performance optimisation. On that basis, it would be 
possible to construct such robot systems as an integral part of farms’ workforce, 
where the system has the ability to react in real-time and even to anticipate the 
collaborators’ actions as suggested by Vasconez et al. (2019). Further research 
on connectivity and intelligence of robot systems will have a key role in the 
development.
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13  Where to look for further information

The following articles provide a good overview on:

 • Communication networks by describing technical and policy elements 
of telecommunication, particularly in the context of 5G: Asif (2018). 5G 
Mobile Communications: Concepts and Technologies. https://doi .org /10 
.1201 /9780429466342.

 • Internet of Robotic Things gives a novel perspective on the IoRT that 
involves communication among robotic things and humans and highlights 
the convergence of several technologies and interactions between 
different taxonomies used in the literature: Vermesan, O., Bahr, R., Ottella, 
M., Serrano, M., Karlsen, T., Wahlstrøm, T., Sand, H. E., Ashwathnarayan, M. 
and Gamba, M. T. (2020). Internet of Robotic Things Intelligent Connectivity 
and Platforms. Frontiers in Robotics and AI https://doi .org /10 .3389 /frobt 
.2020 .00104

 • Multirobot systems are used in agriculture in terms of platforms, control 
and application. Ju, C., Kim, J., Seol, J. and Il Son, H. I. (2022). A review 
on multirobot systems in agriculture. Computers and Electronics in 
Agriculture, 202, 107336, ISSN 0168-1699, https://doi .org /10 .1016 /j 
.compag .2022 .107336.

The following initiatives and their websites are worth visiting to gain more 
information about:

 • Data space development and standardization: Gaia-X, https://gaia -x .eu/.
 • 6G research and development: Flagship 6G, https://www .oulu .fi /6g - 

flagship/.
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